.. _load-seqs: Loading nucleotide, protein sequences ------------------------------------- .. author, Tony Walters, Tom Elliott, Gavin Huttley Loading sequences from a file ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ As an alignment """"""""""""""" The function ``load_unaligned_seqs()`` creates a sequence collection, ``load_aligned_seqs()`` an alignment. .. doctest:: >>> from cogent3 import load_aligned_seqs >>> aln = load_aligned_seqs('data/long_testseqs.fasta', moltype="dna") >>> type(aln) This example and some of the following use the :download:`long_testseqs.fasta <../data/long_testseqs.fasta>` file. As a sequence collection (unaligned) """""""""""""""""""""""""""""""""""" The ``load_unaligned_seqs()`` function returns a sequence collection. .. doctest:: >>> from cogent3 import load_unaligned_seqs >>> seqs = load_unaligned_seqs('data/long_testseqs.fasta', moltype="dna") >>> print(type(seqs)) .. note:: An alignment can be sliced, but a ``SequenceCollection`` can not. Specifying the file format """""""""""""""""""""""""" `The loading functions use the filename suffix to infer the file format. This can be overridden using the ``format`` argument. .. doctest:: >>> from cogent3 import load_aligned_seqs >>> aln = load_aligned_seqs('data/long_testseqs.fasta', moltype="dna", ... format='fasta') ... >>> aln 5 x 2532 dna alignment: Human[TGTGGCACAAA... ``make_aligned_seqs`` from a series of strings ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. doctest:: >>> from cogent3 import make_aligned_seqs >>> seqs = ['>seq1','AATCG-A','>seq2','AATCGGA'] >>> seqs_loaded = make_aligned_seqs(seqs) >>> print(seqs_loaded) >seq1 AATCG-A >seq2 AATCGGA ``make_aligned_seqs`` from a dict of strings ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. doctest:: >>> from cogent3 import make_aligned_seqs >>> seqs = {'seq1': 'AATCG-A','seq2': 'AATCGGA'} >>> seqs_loaded = make_aligned_seqs(seqs) Specifying the sequence molecular type ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Simple case of loading a ``list`` of aligned amino acid sequences in FASTA format, with and without molecule type specification. When the ``MolType`` is not specified it defaults to BYTES. .. doctest:: >>> from cogent3 import make_aligned_seqs >>> from cogent3 import DNA >>> protein_seqs = ['>seq1','DEKQL-RG','>seq2','DDK--SRG'] >>> proteins_loaded = make_aligned_seqs(protein_seqs) >>> proteins_loaded.moltype MolType(('\x00', '\x01', '\x02', '\x03'... >>> print(proteins_loaded) >seq1 DEKQL-RG >seq2 DDK--SRG >>> proteins_loaded = make_aligned_seqs(protein_seqs, moltype="protein") >>> print(proteins_loaded) >seq1 DEKQL-RG >seq2 DDK--SRG Stripping label characters on loading ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Load a list of aligned nucleotide sequences, while specifying the DNA molecule type and stripping the comments from the label. In this example, stripping is accomplished by passing a function that removes everything after the first whitespace to the ``label_to_name`` parameter. .. doctest:: >>> from cogent3 import make_aligned_seqs >>> DNA_seqs = ['>sample1 Mus musculus','AACCTGC--C','>sample2 Gallus gallus','AAC-TGCAAC'] >>> loaded_seqs = make_aligned_seqs(DNA_seqs, moltype="dna", label_to_name=lambda x: x.split()[0]) >>> print(loaded_seqs) >sample1 AACCTGC--C >sample2 AAC-TGCAAC Loading sequences using format parsers ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ``load_aligned_seqs()`` and ``load_unaligned_seqs()`` are just convenience interfaces to format parsers. It can sometimes be more effective to use the parsers directly, say when you don't want to load everything into memory. Loading FASTA sequences from an open file or list of lines """""""""""""""""""""""""""""""""""""""""""""""""""""""""" To load FASTA formatted sequences directly, you can use the ``MinimalFastaParser``. .. note:: This returns the sequences as strings. .. doctest:: >>> from cogent3.parse.fasta import MinimalFastaParser >>> f=open('data/long_testseqs.fasta') >>> seqs = [(name, seq) for name, seq in MinimalFastaParser(f)] >>> print(seqs) [('Human', 'TGTGGCACAAATAC... Handling overloaded FASTA sequence labels """"""""""""""""""""""""""""""""""""""""" The FASTA label field is frequently overloaded, with different information fields present in the field and separated by some delimiter. This can be flexibly addressed using the ``LabelParser``. By creating a custom label parser, we can decided which part we use as the sequence name. We show how convert a field into something specific. .. doctest:: >>> from cogent3.parse.fasta import LabelParser >>> def latin_to_common(latin): ... return {'Homo sapiens': 'human', ... 'Pan troglodtyes': 'chimp'}[latin] >>> label_parser = LabelParser("%(species)s", ... [[1, "species", latin_to_common]], split_with=':') >>> for label in ">abcd:Homo sapiens:misc", ">abcd:Pan troglodtyes:misc": ... label = label_parser(label) ... print(label, type(label)) human chimp The ``RichLabel`` objects have an ``Info`` object as an attribute, allowing specific reference to all the specified label fields. .. doctest:: >>> from cogent3.parse.fasta import MinimalFastaParser, LabelParser >>> fasta_data = ['>gi|10047090|ref|NP_055147.1| small muscle protein, X-linked [Homo sapiens]', ... 'MNMSKQPVSNVRAIQANINIPMGAFRPGAGQPPRRKECTPEVEEGVPPTSDEEKKPIPGAKKLPGPAVNL', ... 'SEIQNIKSELKYVPKAEQ', ... '>gi|10047092|ref|NP_037391.1| neuronal protein [Homo sapiens]', ... 'MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGTVLCKLINSLY', ... 'PPGQEPIPKISESKMAFKQMEQISQFLKAAETYGVRTTDIFQTVDLWEGKDMAAVQRTLMALGSVAVTKD'] ... >>> label_to_name = LabelParser("%(ref)s", ... [[1,"gi", str], ... [3, "ref", str], ... [4, "description", str]], ... split_with="|") ... >>> for name, seq in MinimalFastaParser(fasta_data, label_to_name=label_to_name): ... print(name) ... print(name.info.gi) ... print(name.info.description) NP_055147.1 10047090 small muscle protein, X-linked [Homo sapiens] NP_037391.1 10047092 neuronal protein [Homo sapiens]