Building phylogenies¶
Built-in Phylogenetic reconstruction¶
By distance method¶
Given an alignment, a phylogenetic tree can be generated based on the pair-wise distance matrix computed from the alignment.
Fast pairwise distance estimation¶
For a limited number of evolutionary models a fast implementation is available. Here we use the Tamura and Nei 1993 model.
>>> from cogent3 import LoadSeqs, DNA
>>> from cogent3.evolve.pairwise_distance import TN93Pair
>>> aln = LoadSeqs('data/primate_brca1.fasta')
>>> dist_calc = TN93Pair(DNA, alignment=aln)
>>> dist_calc.run(show_progress=False)
We can obtain the distances as a dict
for direct usage in phylogenetic reconstruction
>>> dists = dist_calc.get_pairwise_distances()
or as a table for display / saving
>>> print(dist_calc.dists[:4,:4]) # truncated to fit screens
Pairwise Distances
============================================
Seq1 \ Seq2 Galago HowlerMon Rhesus
--------------------------------------------
Galago * 0.2157 0.1962
HowlerMon 0.2157 * 0.0736
Rhesus 0.1962 0.0736 *
Orangutan 0.1944 0.0719 0.0411
--------------------------------------------
Other statistics are also available, such the as the standard errors of the estimates.
>>> print(dist_calc.stderr[:4,:4]) # truncated to fit screens
Standard Error of Pairwise Distances
============================================
Seq1 \ Seq2 Galago HowlerMon Rhesus
--------------------------------------------
Galago * 0.0103 0.0096
HowlerMon 0.0103 * 0.0054
Rhesus 0.0096 0.0054 *
Orangutan 0.0095 0.0053 0.0039
--------------------------------------------
More general estimation of pairwise distances¶
The standard cogent3
likelihood function can also be used to estimate distances. Because these require numerical optimisation they can be significantly slower than the fast estimation approach above.
>>> from cogent3 import LoadSeqs, DNA
>>> from cogent3.phylo import distance
>>> from cogent3.evolve.models import F81
>>> aln = LoadSeqs('data/primate_brca1.fasta')
>>> d = distance.EstimateDistances(aln, submodel=F81())
>>> d.run(show_progress=False)
The example above will use the F81 nucleotide substitution model and run the distance.EstimateDistances()
method with the default options for the optimiser. To configure the optimiser a dictionary of optimisation options can be passed onto the run
command. The example below configures the Powell
optimiser to run a maximum of 10000 evaluations, with a maximum of 5 restarts (a total of 5 x 10000 = 50000 evaluations).
>>> dist_opt_args = dict(max_restarts=5, max_evaluations=10000,
... show_progress=False)
>>> d.run(dist_opt_args=dist_opt_args)
>>> print(d)
============================================================================================
Seq1 \ Seq2 Galago HowlerMon Rhesus Orangutan Gorilla Human Chimpanzee
--------------------------------------------------------------------------------------------
Galago * 0.2112 0.1930 0.1915 0.1891 0.1934 0.1892
HowlerMon 0.2112 * 0.0729 0.0713 0.0693 0.0729 0.0697
Rhesus 0.1930 0.0729 * 0.0410 0.0391 0.0421 0.0395
Orangutan 0.1915 0.0713 0.0410 * 0.0136 0.0173 0.0140
Gorilla 0.1891 0.0693 0.0391 0.0136 * 0.0086 0.0054
Human 0.1934 0.0729 0.0421 0.0173 0.0086 * 0.0089
Chimpanzee 0.1892 0.0697 0.0395 0.0140 0.0054 0.0089 *
--------------------------------------------------------------------------------------------
Building A Phylogenetic Tree From Pairwise Distances¶
Phylogenetic Trees can be built by using the neighbour joining algorithm by providing a dictionary of pairwise distances. This dictionary can be obtained either from the output of distance.EstimateDistances()
>>> from cogent3.phylo import nj
>>> njtree = nj.nj(d.get_pairwise_distances())
>>> njtree = njtree.balanced()
>>> print(njtree.ascii_art())
/-Rhesus
/edge.1--|
| | /-HowlerMon
| \edge.0--|
| \-Galago
-root----|
|--Orangutan
|
| /-Human
\edge.2--|
| /-Gorilla
\edge.3--|
\-Chimpanzee
Or created manually as shown below.
>>> dists = {('a', 'b'): 2.7, ('c', 'b'): 2.33, ('c', 'a'): 0.73}
>>> njtree2 = nj.nj(dists)
>>> print(njtree2.ascii_art())
/-a
|
-root----|--b
|
\-c
By least-squares¶
We illustrate the phylogeny reconstruction by least-squares using the F81 substitution model. We use the advanced-stepwise addition algorithm to search tree space. Here a
is the number of taxa to exhaustively evaluate all possible phylogenies for. Successive taxa will are added to the top k
trees (measured by the least-squares metric) and k
trees are kept at each iteration.
>>> import pickle
>>> from cogent3.phylo.least_squares import WLS
>>> dists = pickle.load(open('data/dists_for_phylo.pickle', 'rb'))
>>> ls = WLS(dists)
>>> stat, tree = ls.trex(a=5, k=5, show_progress=False)
Other optional arguments that can be passed to the trex
method are: return_all
, whether the k
best trees at the final step are returned as a ScoredTreeCollection
object; order
, a series of tip names whose order defines the sequence in which tips will be added during tree building (this allows the user to randomise the input order).
By ML¶
We illustrate the phylogeny reconstruction using maximum-likelihood using the F81 substitution model. We use the advanced-stepwise addition algorithm to search tree space, setting
>>> from cogent3 import LoadSeqs, DNA
>>> from cogent3.phylo.maximum_likelihood import ML
>>> from cogent3.evolve.models import F81
>>> aln = LoadSeqs('data/primate_brca1.fasta')
>>> ml = ML(F81(), aln)
The ML
object also has the trex
method and this can be used in the same way as for above, i.e. ml.trex()
. We don’t do that here because this is a very slow method for phylogenetic reconstruction.